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Exact solutions of a three-dimensional nonlinear Schrodinger 
equation applied to gravity waves 

By W. H. HUI AND J. HAMILTON? 
Department of Applied Mathematics, University of Waterloo, Ontario, Canada 

(Received 17 August 1978) 

The three-dimensional evolution of packets of gravity waves is studied using a non- 
linear Schrodinger equation (the Davey-Stewartson equation). It is shown that 
permanent wave groups of the elliptic cn and dn functions and their common limiting 
solitary sech forms exist and propagate along directions making an angle less than 
y?c = tan-l( 1/42, = 35" with the underlying wave field, whilst, along directions making 
an angle greater than 1c.,, there exist permanent wave groups of elliptic sn and negative 
solitary tanh form. Furthermore, exact general solutions are given showing wave 
groups travelling along the two characteristic directions a t  $c or - eC. These latter 
solutions tend to form regions of large wave slope and are used to discuss the waves 
produced by a ship, in particular the nonlinear evolution of the leading edge of the 
pattern. 

1. Introduction 
In  recent years, much attention has been given to the problem of the nonlinear 

evolution and the interaction of progressive waves of slowly varying amplitude and 
phase moving under gravity in deep water. It was studied by Lighthill (1967) and 
Hayes (1973) using Whitham's theory, and by Chu & Mei (1970, 1971), Hasimoto & 
Ono (1972) and Davey & Stewartson (1974) using the techniques of multiple scales. 
The apparent differences resulting from the two different approaches for two-dimen- 
sional waves were resolved by Yuen & Lake (1975) who showed that the nonlinear 
Schrodinger equation governing the evolution of wave packets as derived using the 
multiple scales techniques is obtainable by higher-order Whitham theory. They also 
demonstrated good agreement between theory and experiments. 

For three-dimensional packets of surface gravity waves the equation governing 
the slow evolution of amplitude and phase was first derived by Davey & Stewartson 
(1974) using the multiple scales technique. It turned out to be a three-dimensional 
nonlinear Schrodinger equation and was successfully applied by Longuet-Higgins 
(1976) in the calculation of the nonlinear energy transfer in a narrow gravity wave 
spectrum of a random sea. He showed that energy from an isolated peak in the spectrum 
tends to spread outwards along two characteristic lines in wavenumber space, making 
angles y?, = tan-l(1/42) = 35' or - $rC with the underlying wave field. 

In  this paper we derive classes of exact solutions to the Davey-Stewartson equation 
and apply them to study the nonlinear evolution of the wave pattern produced by a 
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moving ship. For packets of waves of small surface slope but slowly varying amplitude 
and phase, we may write the height 6 of the free surface above its undisturbed value 
in the form 

(1) 

where t denotes time, and x, y orthogonal horizontal space co-ordinates. The 
exponential term in (1) represents an underlying carrier wave whose wavenumber 
(kl, k,) and frequency is satisfy the linear dispersion relation for irrotational gravity 

5 = Re EA exp [ i (k ,  x + k, y - irt)] ,  

waves in deep water, namely 
52 = g(k; + k i ) t  

and A represents a slowly varying amplitude and phase. The (small) parameter 
characterizes the surface slope, and g is theacceleration due togravity. For convenience, 
we choose units of time and length so that 

(3) 

Accordingly, the phase velocity and the group velocity of the carrier waves are 1 
and 3, respectively, in the positive x direction. It can be shown that for gravity waves 
(Davey & Stewartson, 1974) on deep water the evolution of A is, to the first order in 6, 

governed by the partial differential equation? 

- 
g = 1, CT = 1, (k , ,k , )  = (1,O). 

2iA, = a(ACC-2A,,)+ JAI'A, ( 4 )  

= e(z- i t ) ,  'I = Ey, 7 = e2t. ( 5 )  

where the scaled variables 5 , ~  and 7 are 

The form of the scaling ( 5 )  implies an assumption that the length scales for the 
variation of A in any horizontal direction is of order 6-l. From the governing equation 
it then follows that the time-scale for the evolution of the envelope is of order E-,.  

The Davey-Stewartson equation (4) is a form of three-dimensional nonlinear 
Schrodinger equation. With the substitution 

A = Rei@, (6) 

(7a) 

( 7 b )  

where R and 0 are real functions, ( 4 )  is equivalent to a pair of real equations 

8Rr = 2(R505- 2R,0,)+ R(Og-20,,,), 

and 

To avoid discontinuity in 0, R in (6) is defined so that it can change sign. According 
to (1) and (6), the surface elevation varies within the envelope consisting of IRI and 

As in the two-dimensional case, the Davey-Stewartson equation (4) as derived via 
the multiple scales technique is also obtainable from higher-order Whitham theory. 
In  fact, the averaged Lagrangian 9 in the Whitham variational principle in the three- 
dimensional case is 

8ROr = R(0i  - 20;) - (RE[ - 2R,,,) - 4R3. 

-PI- 

d p  = Uz( (Wz /K-  1 ) - 9 U 4 K 2 + U q K - 1 + g ( 2 E e - i z ) K - 4 U ~  

+ *( 2i2 - zz) K-*U; + 2ZK-SUt  U, + 2iK-SUt U, + 3 Z l K - 4 U ,  Uy, (8) 

where K = ( E 2  + Z2)+ and u = eRt 

-f Suffixes denote partial differentiation. 
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a being the amplitude and Z and i the wavenumber components related to the frequency 
w through the usual phase function 6, 

w = -&, k = and i = 6,. 

In  appendix A we show how with the assumption that the frequency and wave- 
number depart little from some mean values [this is consistent with the approximations 
already made in obtaining (S)] the variational principle (8) can be written in the form 

8 / / / [ - 4 R 2 0 , - R 4 + & ( R ~ + R 2 0 ~ ) - ( R ~ +  R20;)]dxdydt  = 0, 

where 6 = x - t + O ,  

this yields precisely equation (7) .  Thus all solutions of the Davey-Stewartson equation 
which satisfy the above assumptions will in fact be close approximations to solutions 
of the averaged variational approach and thus asymptotically valid despite the 
multiple scales method which was used in deriving the equations. A lower-order 
Whitham theory would result in the evolution equations (7)  without the terms 

In $ 2, solutions to (7)  are obtained for wave groups of permanent form, while in 
$ 3  general solutions are given for waves whose groups travel along the characteristic 
directions. Application to the nonlinear evolution of the ship wave pattern is discussed 
in $4. 

(R& - 2Rqq ) * 

2. Permanent wave groups 
In  this section we look for solutions to the Davey-Stewartson equation (7)  for 

which the frequency and wavenumber are constant. For simplicity in studying the 
evolution of water waves we may, without loss of generality, choose the phase plane 
6 = x - t + 0 = const. to be perpendicular to the x axis so that individual waves are 
propagating in the x direction. Thus we may write 

0 = k t - a T  (9) 

4R, = kRE (10) 

(11) 

(12) 

with k and u constants, of O( 1) .  Substituting (9) into (7) yields two equations for R: 

and 

Now from (lo),  

and we need only consider ( 1 1 ) . 

R g  - ZR,, - (k2  + Su) R + 4R3 = 0. 

R = R(5+ &kT, 7) 

We now further restrict ourselves to finding plane progressive solutions of (1 1) in 
the form 

R = R ( X ) ,  X = ccos$+Tsin$- UT, 

where U = - & k C O s $  (14) 

and the group progresses in a direction making an angle $ with the carrier waves. 
Substituting (13) into (1 1) with 

p = +k2+4a,  (15) 

we have yR" - 2pR + 4R8 = 0, (16) 

where y = cos2 $ - 2 sin2 $. (17) 
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FIGURE 1. Regions for groups of permanent form. 
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Equation (16) can readily be integrated once, and with the substitution 

r = R2 (18) 
we obtain (19) 

where the constant of integration B is arbitrary. 
In order to study the solutions of (19) we divide the & plane into four regions by 

the lines y = 0 (see figure 1). Thus, in the two regions I, y > 0 whereas, in the two 
regions 11, y < 0. We consider first the special case y = 0. 

y ( d ~ / d X ) ~  = - 8r3+ 8pr2+ 2Br = K(r) ,  

2.1. tan2$= + 
Along the characteristic lines AA' or BB' for which y = 0 ,  there are only trivial 
solutions to (16), namely, R = 0 or R = (2p))  for p > 0. The latter is simply a constant 
amplitude plane progressive wave. 

2.2. tan2$ < 4 
This corresponds to regions I where y = cos2$- 2sin2+ > 0 with the group shape 
propagating in a direction making an angle less than tan-l(1/42) with the wave 
direction. The solution to (19) depends on the nature of the roots of the cubic equation 
K(r )  = 0. Out of all possible combinations of p and B, bounded solutions exist only 
in the following three cases. 
(a) B = b2 > 0. In  this case (19) becomes 

Qy(dr/dX)2 = r(r2 - r )  (T - rl), (20) 
(21 1 where r2 = &[p + (p2 + b2)J]  > 0, = +[p - (p2 + b2)*] < 0. 

The solution to (20) is 

where the modulus m of the elliptic cn function is 

r = r2 cnZ[(2/y)J (p2 + b2)*X] ,  
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From (22), we obtain the cnoidal envelope solution 

R = r ~ c n { ( 2 / y ) ~ ( / 3 2 + b 2 ) ~ ( ~ c o s @ + ~ s i n @ -  U7)). (24) 

( b )  /3 = a2 > 0 and B = 0. This is the limiting solution of case (a)  as m-t 1.  Thus 
we have the solitary solution for the group shape 

R = /3tsech{(2b/y)f (ccos@+qsin$- UT)}. (25) 

As seen from (25) along any given direction @ < @c = tan-l ( l /J2) ,  the width of the 
solitary wave is inversely proportional to its amplitude. On the other hand the width 
of the solitary wave and the wavelength of the cnoidal wave (24) for the group shape 
are proportional to y4. = (cos2 $ - 2 sin2 @)4. Hence they vanish when the characteristic 
directions @ = & II., are reached. 

(c) /3 > 0 and -p2 < B < 0. In  this case (19) becomes 

&y(dr/dX)z = r ( r 2 - r )  ( r - r l ) ,  rl < r < r2, (26) 

where r2 = &[/3 + (p2 - b2)*], rl = +[p- (p2 - b2)4], b2 = - B. (27) 

r = rl/[l -m2sn2{(2r2/y)4X}], (28) 

The solution to (26) is then 

where the modulus m of the elliptic sn function is 

From (28), we obtain 
R = ridn((--) 2r2 4 (ccos@++sin@- U7) 

It should be pointed out that, in the limit B+O, (30) also becomes the solitary 
solution in case ( b ) .  Furthermore, for a given direction @ the wavelength of the group 
shape as given by (30) is inversely proportional to its amplitude and vanishes when 
the characteristic directions are reached. 

Summing up, since the constant /3 and B can be chosen arbitrarily, we conclude 
that if the angle @ between the group propagation direction and that of the waves 
satisfies cos2 @ > 2 sin2 @ there always exist solutions for the group envelope of the 
elliptic cn form (24) and of the elliptic dn form (30). These solutions represent infinite 
groups (of permanent waves) whose envelope varies periodically in space and time. 
Their common limit is the solitary form (25). These are sketched in figure 2 over one 
period. 

2.3. tan2@ > i$ 
This corresponds to regions I1 in figure 1 where y = cos2 @ - 2 sin2 @ < 0. In this case 
equation (19) has bounded solutions only when 

/ 3>  0 and -p2 < B <  0. (31) 

(32) 

(33) 

We may then write (19) as 

- & y ( d ~ / d X ) ~  = r ( r l - r )  ( r 2 - r )  2 0, 

where rl = &8 - (p2 - b2)4] > '0, r2 = i$[P + (p2 - b2)3] > 0, 

b2 = -B ,  0 < r < rl 
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FIGURE 2. Wave group envelopes in region I. (a) Infinite periodic cn form, period = T, modulus 
rn = 4. ( b )  Infinite periodic dn form, period = T, m = 3. (c) Solitary sech form. The carrier waves 
in the envelope are progressing in the X direction while the group envelope is progressing in a 
direction making an angle $ < tan-* (1/J2) with the plane of the paper. 

and the solution is r = rl sn* [( - 2 r 2 / y ) 4 X ] ,  (34 )  

where the elliptic sn function has a modulus 

m = (r1/r2)k (35 )  

The solution for the group amplitude is then 

R = r t  sn {( - 2r2 /y ) t  (5 cos + 7 sin $ - ~711, (36 )  

representing an infinite periodic wave group (of permanent waves). An interesting 
limiting case exists when b = B, hence m = 1 and (36 )  reduces to 

R = (/3/2)4tanh((-P/y)4(6cos$++sin$- U7)). (37 )  

The group of (37 )  has a single depression (figure 3 ) ,  in direct contrast to the solitary 
wave (25) in region I which has a single hump. We therefore call (37 )  a ‘negative 
solitary wave’. It has a sharp trough compared to the round crest in the positive 
solitary wave case. It is evident that for waves on deep water the negative solitary 
solution cannot exist for the two-dimensional non-linear Schrodinger equation; it is 
purely a three-dimensional phenomenon. It can exist however for two-dimensional 
waves on finite depth if the product of the water depth and the wavenumber of the 
carrier wave is less than 1.363 (Hasimoto & Ono 1972). 

Like the positive solitary wave, the width of the negative solitary wave along any 
direction $ > $cis inversely proportional to the depth of its trough. On the other hand 
the width of the negative solitary wave and the wavelength of the sn wave (36 )  are 
proportional to (2 sin2 $ - cos2 $)*. Hence, they vanish as the characteristic direction 
$=@c is approached. The solutions (36 )  and (37 )  are sketched in figure 3 where, 
owing to periodicity of (36) ,  only the solution in one period is presented. 
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tanh X 

(b ) 

FIGURE 3. Wave group envelopes in region JI. (a) Infinite periodic sn form, period = T, modulus 
m = 8. (b )  Solitary tanh form. The carrier wavesin the envelope ar0 progressing in thexdirection 
while the group envelope is progressing in a direction making an angle @ > tan-' (1/J2) with the 
plane of the paper. 

As an illustration for the negative solitary group of waves, take $ = n/2, u = 0; 
then we have a standing group of water waves with a single depression, the surface 
elevation of which is given by 

k k 
2 2 

g=acosO, a = € - t a n h e - y  and O =  ( l + e k ) x - ( l + & e k ) t .  

2.4. Discussion 

Firstly, all the solutions obtained in this section have the common property that 
while the carrier waves propagate in the 5 direction a t  constant speed, their group 
shape (the envelope) propagates, also a t  constant speed, in a different direction 
making an angle $ with the 6 axis. This is evidently a three-dimensional property and 
does not exist in a two-dimensional wave field. As an example, consider (36) and take 
@ = 60°, k = J2, u = 0 and b = + J3, then the surface elevation of this wave group 
is given by 

Y = Qssn [e ,/04 (x+ J3 y- (8 + 4 J2 B )  t ) ]  cos [( 1 + ~ , / 2 )  2- (1 + s/ J2) t ] ,  (38) 

where the modulus of the elliptic function is m = 1/43. In  (38) the carrier waves are 
propagating in the x axis while the group envelope is propagating obliquely at an 
angle 60' to the x axis. 
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Secondly, we point out that all the solutions obtained above have the corresponding 
special case, namely the standing group shape waves when U = 0. In  the two- 
dimensional case such wave groups were studied by Hasimoto & Ono (1972). (Note 
‘standing’ is relative to the group velocity of the carrier waves.) 

Thirdly, we explain the existence of the negative solitary wave in regions 11. 
Equation (16) expresses the balance between the effects of nonlinearity (the term 4R3) 
and dispersion (especially the curvature term yR”) as the condition for existence of 
permanent group shapes. On crossing the characteristic lines y changes its sign; hence 
for the curvature to have the same balancing effects the group shape must change 
from convex to concave, or vice versa. This explains why there is solitary wave on 
one side of the characteristic line and negative solitary wave on the other side. 

In  order to get a clearer understanding of the different roles the dispersion plays 
in the two sides of the characteristic lines, it  is instructive to repeat Stokes original 
construction of wave groups (valid in the small amplitude limit) for general $. Thus 
we start with a small amplitude solution ( E  -+ 0) 

5 = eRoexp{i[$x-ot+dEx+diy- (o,dE+qdi)t- (gw- ,~dE2+o~idEdi+goi id i2) t ] } .  
(39) 

Setting dE = _+Aces@, d i =  ? Asin$, o = $ = 1 

and adding solutions we obtain 

g = 2eR0 cos [A(. cos $ + y sin $ - i t  cos $)] exp {i[x - t( 1 - *Az (cos2 $ - 2 sin2 $))I}. 
(40) 

Thus if cos2$ > 2sin2$, I$[ < the finite group length always decreases the 
effective frequency (or phase speed), but for /$I > 

Finally, we remark on the stability of the wave groups obtained in this section. 
For some time it has been known that if the effects of finite group length (curvature) 
are not included, the wave groups as derived from linear theory (Stokes 1847) are 
unstable when the angle @ between the propagation velocity of the group and that of 
the phase is zero (see Benjamin & Feir 1967). This instability may be qualitatively 
described as the result of higher waves travelling faster and catching up the lower 
waves, tending to form a discontinuity in the phase (Lighthill 1967). In  the three- 
dimensional case Hayes (1973), using a lower-order Whitham’s theory equivalent to 
(7) without the terms (Rt5 - 2R,,), showed that this same instability persists for angles 
$ up to the critical angle $c, and for angles greater than $c there is stability. It is, 
however, not so easy to see what the stability properties would be of the solutions 
of wave groups of finite group length as given above to the higher-order Whitham’s 
equation (7).  

As shown in 2.1, the only waves of constant frequency/wavenumber type having 
their group propagating a t  constant velocity along the characteristic directions 
$ = f $c are the well-known constant amplitude plane progressive waves. However, 
other types of waves may still exist whose group propagates along these characteristic 
directions. To this problem we now turn. 

we have the opposite effect. 
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3. Waves having their groups propagating along the 
characteristic directions 

it  is more convenient to use the characteristic variables p and v : 
To study waves having their groups propagating along the characteristic directions, 

p = E+q/J% v = 5 - 7 l J 2 .  (41) 

The planes p = const. and v = const. are perpendicular to the characteristic lines 
AA’ and BB’, respectively. Under this transformation, the Davey-Stewartson equa- 

l 2R, = R, 0, + R, 0, + Rep, tions (7) become 

and 2R0, = RO, 0, - RpY - R3. 

3.1. Derivation of the general solutions 

We now look for classes of solutions to (42) in the form 

and 
(43) 

These include as special cases solutions whose group shape propagates in a char- 
acteristic direction and in particular any of permanent form. 

Substituting (43) into (42) yields 

and 
(44) 

Differentiation of the first equation of (44) with respect to p. and v gives 

lijca S Y ”  + f p p  G,, = 0. (45) 

From (45) either lijc,G,, = 0 or Fa,Gyy p 0. In  the former case there are only three 
possibilities, namely (a)  G,, = g,, = 0, (b )  F,, = fpp = 0, and (c) G,, = Fp, = 0. So 
altogether we need to discuss the following four cases for solutions to (44). 

(a)  G,, = g,, = 0. In  this case 

G = G l b )  v + GOW, 9 = 91(7) v + go@) ; (46) 

GI = 0, g1 = const = - 2U. (47) 

substituting (46) into (44) and equating like terms in v results in 

Hence R is independent of v and G0(7) can be absorbed into 3’ to render (44) into 

and 

Equations (48) can be solved successively yielding the following solution : 

and 

F = F(p- UT) 

f z= -+TF’(,u- U 7 ) + h ( , ~ -  U T ) - ~ ~ ( T ) .  

We therefore conclude that in this case the general solution to (42) is 

and 

R = R ( p -  UT) 

0 = - + 7 R 2 ( ~  - UT) - 2Uv + h(p - UT). 

(48) 

(49) 
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This solution contains two arbitrary functions R and h and an arbitrary constant U. 
The group shape propagates in the p direction at constant speed sU.  

(b)  Fpp = fpp = 0. In  this case solutions can be obtained from case (a)  by inter- 
changing F with G and f with g. Thus we have the following general solutions to (42) 
with two arbitrary functions R and h, 

and 

The group shape propagates in the Y direction a t  constant speed E U .  
(0) l$p = G,,,, = 0. We may then write 

P = Fi(T)p+Fo(7), G = 61(7) v+Go(?). (52) 

Substituting (52) into the first equation of (44) and differentiating the resulting 
equation with respect to p and Y respectively, we get 

and 

with the condition that 
2(FA + GA) = +fi GI. 

By substituting (52) and (53) into (44) it  can easily be shown that in this case ( c )  

( d )  FppG,, + 0. Then we may write (45) as 
there are no new solutions other than those found in (a) and (a). 

and hence 

and 

where Hi are arbitrary functions of 7 .  However, further investigations of (44) show 
that no non-trivial solutions for R and 0 c&n result in this case. 

Summing up, we have shown that for the Davey-Stewartson equation (42) the 
most general solutions of the form (43) are given by (50) and (51). Their group shape 
propagates in one of the characteristic directions a t  a constant speed sU relative to 
the group velocity S. 

3.2. Discussions 

Firstly, the exact general solutions (50) [or (51)1 contain two arbitrary functions R 
and h and an arbitrary constant U. While sU is the speed of propagation of the group 
shape, R ( p )  and [h(p)  - ~ U Y ]  are the initial group envelope and phase, respectively. 
The fact that R is arbitrary is interesting; it means that wave groups of any envelope 
form, e.g. a single hump or a single depression, can propagate a t  constant speed along 
the characteristic line without changing their shape. On the other hand, this very 
property that the group envelope shape cannot change during the propagation also 
rules out the possibility of two or more envelope-solutions passing each other along 
the characteristic line, in direct contrast to the two-dimensional case for which it is 
known (see Zakharov & Shabat 1972) that two or more envelope-solitons can pass 
each other. 
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Secondly, although the group propagates a t  constant velocity without changing 
its shape, the present solution differs from that obtained in 9 2 in that the frequency 
and wavenumber of the underlying waves are no longer constant. In fact the frequency 
and wavenumber components are given by -Ot ,  Oa and 0, respectively. Thus, for 
example, 

and the x components of the wave slope 

(54) 

( 5 5 )  

0, = l + O ,  = l-e~RR'-2~U+eh',  etc., 

ac/az = e(eR' + iRO,) exp [ i (x  - t + a)]. 
It is seen from (54) that the wavenumber and frequency vary with time and space, 
except in the trivial case R' = h' = 0 when we have constant amplitude plane pro- 
gressive waves. The term erRR' in (54) also shows that nonlinearities can cumulate 
to give finite change in wavenumber and frequency. In  particular, the wave slope [see 
(55) and (54)] increases as -e2rRR'. Accordingly, waves tend to become more 
steepened with time in regions where R' < 0 and more flattened where R' > 0. 

It is also worth notingt that, since U is constant, the term - 2Uv in (50) does not 
contribute to the time evolution of the underlying carrier waves; it simply changes 
them by a constant amount, as is seen from (54). Hence to discuss the evolutional 
aspects of the carrier waves we can put U = 0 in (50), which 'then becomes the 
solution of equation (4) without the second-order derivative terms (Aa - 2A,,,). 
However, as shown in the special cases in $j 2 these second-order derivative terms tend 
to counterbalance the effects of nonlinearity. But they vanish along the characteristic 
line, leaving the evolution process controlled entirely by nonlinearity, whence the 
resulting tendencies of the underlying carrier waves as mentioned in the last paragraph. 

Finally, it  should be mentioned that wave groups resembling that of (50) or (51) 
already exist in the Kelvin ship wave pattern in which the direction of propagation 
of waves and that of their groups make an angle tan-' (1/42). The next section will 
be devoted solely to the study of the nonlinear evolution of such a pattern. 

4. Applications to the Kelvin ship wave pattern 
It is known (e.g. Lamb 1932) that at large distances from a ship moving with 

uniform velocity V the disturbance in the water resolves into: firstly a set of waves 
transverse to V confined between the critical angles q5c = f tan-' ($42) = f 194' to the 
ship's course whose amplitude decreases as t-8, where t measures the age of the wave 
pattern; secondly, near the critical angles there is a region of waves diverging from 
V of higher amplitude, decreasing according to linear theory only as t - f  (Hogner 
1923; Peters 1949). Ursell(l960) gave a series expmsion in terms of the Airy functions 
for the wave form near these lines (see also Warren 19G2 for a simpler first approxima- 
tion) showing that the crest lengths of these waves increases as t*. 

It is convenient to introduce at  this stage the geometric construction due to Lighthill 
(1957) for determining the wave pattern (figure 4). If O P  represents the velocity V 
of the ship, then all waves whose wavenumber components are parallel to O P  are 
the same as a wave of speed I VI parallel to V, have velocities OC say lying on a circle 

t We are grateful to the referee for suggesting that a discussion of tlie general solution (50) 
along the following lilies may be illuminating. 
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A 

FIGURE 4. Geometry of ship wave pattern. 

with OP as diameter. Since the group velocity OC = 40C it is simple to construct the 
critical angle q5c. To make the connexion with the Davey-Sfewartson characteristic 
directions, we point out that the wave near q5 = q5c makes an angle equal to AGO with 
the direction of the 'group ' (i.e. the region of amplitude t - i ) .  This angle is tan-l ( l / J 2 )  
and the leading edges of the Kelvin ship wave pattern therefore represent groups 
travelling in the characteristic directions which may be described by the solution of 5 3 .  

Thus we obtain from Ursell (1960) the following expression for the amplitude of 
the waves in the neighbourhood of the critical lines 

c (N,  q5) = -k!- '&)Ai[ - Nfp*($)] sin [Nv*(q5)] + O(N-3).  
p V4 N* 

Here P is the total force applied to the water (weight of the vessel), p the density of 
water, g the acceleration due to gravity, po(q5) a function tabulated by Ursell @o(q5c) = 
38/23) ,  N the distance from the ship measured in units V 2 / g  andpu(q5) and v*(q5) 
are given near q5 = q5c by 

(57) 
and 

q5 being the angle from the ship's path. Now the Davey-Stewartson variables are given 

(58) 

} P*(q5) = - 3 / 4 w  (q5 - A) + O(q5 - 
v*(q5) = - 4 ( 3 ) / 2  + 4 ( 3 ) / 4 ( 2 )  (q5 - A) + O(q5 - w, 

J 5 = - --NO) 4 ( 3 ) / 2  f cN(q5 - q5c) 4 ( 3 ) / 4 ( 2 ) ,  

r = - w - No) 4 ( 3 ) / 4 ( 2 )  - 6 ( q 5  - q5J 4 ( 3 ) / 2  

by 

and T = 8N0 2 / J ( 3 ) ,  
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where the time origin is taken to be when the waves at (No, c $ ~ )  were generated. Note 
that 

which is in the direction of increasing g, in agreement with the specification of the 
carrier wave for the Davey-Stewartson equations. Also 

- N ~ P * ( # )  = Nj3/$(#-  #A 

2 
= -b(er) Y ,  

J 3  

here ~ ( B T )  = l / ( ~ N i )  = ( t ~ J ( 3 ) / 2 ) - *  (61 )  

and v is the characteristic co-ordinate (41). Now if, near r = r* say, we choose 
6 = N o ( r * ) 3  [No given by ( ~ S C ) ]  as a measure in agreement with (56 )  of the wave 
amplitude, then the variation in the group shape is in agreement with the Davey- 
Stewartson scaling (5). The Ursell solution (56 )  may be rewritten as 

c = ~&,po (9, + 
where go is a constant. 

Thus if co = O( 1)  or less and for times 7 = O(6-l) or equivalently for points distanced 
O(e-3) from the ship, the wave pattern in the neighbourhood of the critical lines can 
be written as the linear form of solution (51) of the Davey-Stewartson equation. 
Hence setting b(e7) = 1 in consistency with the derivation of their equation we may 
identify 

R ( v )  = - 34pg Ai ($ v) 
2*p v4 (63) 

and therefore the modifications due to nonlinearity apply. In particular, using the 
well-known properties (Abramowitz & Stegun 1964) of the Airy function Ai( 2v /43 )  
for v < 0 and the remarks made in 8 3.2, it can easily be shown that the slope of the 
carrier waves will increase with time at the front of the group (on the critical line) 
and will decrease a t  the rear. These solutions therefore suggest that wave breaking 
may occur at the leading edge even for very large time lags. 

We note also that although ( 6 2 )  may be identified with the linearized form of (51) 
whenever b(er) is a slowly varying function of r ,  that is when 7 = O( l /e) ,  the inclusion 
of nonlinear terms will cause significant modification to the solution also by times 
r = O( l/ct). Therefore if go is not small there is no overlap which would enable Ursell's 
solution to be used to give initial conditions for the R( v). 

Since these waves in the neighbourhood of the leading edge vary on the time scale 
of 1/62, when t = O(l/e2) the inability of the Davey-Stewartson equations to model 
the linear limit is thought to be probably due to the violation of the assumption of 
only O(6) changes in the direction of the waves in different parts of the group. 

5 FLY 93 
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It may be that the behaviour of the solution of $ 3  will also apply in the region 
N2 = 0 ( 1 / ~ 2 ) ,  r = O(1) when we would expect a significant nonlinear modification 
of the linear patterns to have occurred. There is however the further possibility that 
the divergent waves form a group of nearly permanent form a t  r = 0(1) ,  having 
a constant amplitude or rectangular group shape ($ 2.1). This (if it  were stable) would 
persist to times O( l p ) ,  giving a significantly different aspect to the asymptotic 
behaviour of the Kelvin ship wave pattern. 

Previous investigations into the nonlinear evolution of the Kelvin ship wave pattern 
include those of Howe (1967) using Whitham theory (without the dispersion terms 
Rss-2R,, in (7)), Newman (1971) and Hogben (1972). Howe demonstrated the 
tendency for phase jumps to be generated in the wave pattern, while Newman showed 
the possibility that the waves near the leading edge be unstable to third-order inter- 
actions. HogSen, however, calculated the effects of these interactions using de- 
composition of the wave pattern into a finite number of modes, and therefore including 
dispersion. The major effect observed was merely a phase shift in the location of the 
pattern. Because of the complication of Hogben’s analysis and the limited accuracy 
(due to the finite number of modes employed) it appears that neither instability nor 
stability have been demonstrated decisively. However, it  is clear that nonlinear effects 
will be important, probably with rapid cumulative effect, and may lead to either of 
the possibilities suggested above, namely an Airy-function-shaped group at  times 
O(l/e3) of nearly constant form with persistent wave breaking at the leading 
edge, or an approximately rectangular constant width group, established a t  times 
t = 0 ( 1 / € 2 ) .  

We are grateful to Dr M. A. Donolan of Canada Centre for Inland Waters for valuable 
comments on the paper and for providing ship waves. This work was supported by 
the National Research Council of Canada. 

Appendix A. Three-dimensional Whitham equations 
It is known that a wave group of arbitrarily small wavenumber can be generated 

in linear theory merely by the superposition of two (linear) waves of slightly differing 
frequency/wavenumber (Stokes 1847). Thus it is not surprising that the first-order 
correction terms for finite group length (a, k, w not too slowly varying) can be obtained 
from the linear dispersion relation 

g ( 0 ,  E , t )  = wZ/(EZ+P)L- 1 = 0 (A 1)  

(say) where we are using units such that the acceleration due to gravity is unity. The 
extended variational principle takes the form (Whitham 1974, p. 526) 

SS~I {azg(w, E ,  I) - 4a4(Ez + P )  + *at g,, + Salgki + la2 z V%i-at%g,ii 

-ata,g,i+a,a,g~i}dXdydt = 0.  (A 2) 

Yuen & Lake (1 975) have shown that (A 2) is strictly correct only with the additional 
assumption that w ,  k, I depart little from their mean values w,, k,, I ,  (say), although 
the amplitude a may have large cumulative changes. To be specific we have ignored 
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terms such as a2kz compared with a:k2. With these assumptions it is consistent to 
replace w by K* in the higher-order terms of (A 2) [K = ( E2 + i2)*]. Thus we have 

S!J/{a2(wZ/K- i ) - ~ g a 4 K 2 + a q ~ - 1 + ~ ( 2 & 2 - i 2 )  ~-4a;+3@2- E2) ~ - 4 ~ 2 ;  

+ ~ L K - ~ u ,  ax + 2i~-ta,  ay +  ELK-^^, a,} dx dy dt = 0. (A 3) 

Reduction to the Davey-Steularfson equation. At this stage the variational principle 
attaches no special importance to the x or y directions. To obtain an equation of 
Davey-Stewartson form referred to a carrier wave proceeding in the x direction, 
we set 

w =  I-@,, & = I + @ ,  and I = @ ,  (A 4) 

in (A 3) and neglect higher-order terms to obtain 

sJJJ{u~( - 20, - 0,) - 3a4+ a? + 0; a2+ a;+ 0; a2- &a; - $0; a2 

+ 2at ax + 2a2 0, Ox} dx dy dt = 0. (A 5 )  
Since the first-order balance is of the form 

2 a/at + a/ax = o 
we may rewrite (A 4) as 

~ j ~ J { - 2 a 2 ~ , - ~ a 4 + f ( a ~ + a 2 ~ ~ ) - ~ ( a ~ + a 2 ~ ~ ) } d y d ~ d t  = 0, (A 6) 

where we define [ = x - i t .  The equations given by variations Sa and SO in (A 5) may 
be combined using 

A = aeiQ (A 7) 

to obtain precisely the Davey-Stewartson equation (4) in $ 1 .  This result that the 
Davey-Stewartson (three-dimensional nonlinear Schrodinger equation) can be 
obtained from a variational principle would appear to be new. 

Constant form solutions. I n  looking for constant form solutions it would be possible 
to proceed directly from (A 6) .  However the ambiguity in the wave direction (to order 
8) introduced by (A 4) would remain to hinder the interpretation of the solution. We 
therefore consider it worth while to derive the group shapes of constant form directly 
from (A 3) ; thus we consider solutions of a, w ,  $, as functions of one variable, 

z = x - ct. (A 8) 

& = &(z) ,  i = constant and w = c$+ b, (A 9) 

From the consistency relations between w ,  %, k we obtain 

where b is an arbitrary constant. With these assumptions (A 3) takes the form 

where h ( = constant) is a Lagrange multiplier. Now we note that if 

a(z) ,  il.(x), 1, b,  h, c 
is a solution, so is 

1 
U2 

u~&(u%), A, ~ b ,  h p ,  c i a ,  
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where a is an arbitrary constant. Hence without loss of generality we may take the 
group velocity c to be s. As above, we now replace o, in the higher-order terms by 
their mean values, satisfying 

and, applying variations a&, we obtain 

d i k o  + b,  ko, l o )  = 0 (A 12) 

Bgw+siE = 0 (A 13) 

which are two simultaneous equations giving k,, I ,  in terms of the b. Note that if & 
satisfies the first-order dispersion relation (A 12) then hz  must be a second-order 
quantity and therefore a simple constant playing no part in the variational principle. 
Thus we set h to zero. 

For the mean values we obtain 

K, = cos2 $, E ,  = K~ cos $ and lo = K, sin $, 

where 

and $ is the angle between the direction of the waves and the group propagation 
direction. Thus substituting these values in the higher-order terms of (A 10) and 
writing 

q(k, + Ak, bo+ Ab) = 2Ab/c0s $ + O(Ab2, Ak2), 

where Ak(g) and Ab (a constant) are deviations of k(g) and b from the values (A 14), 
we obtain 

b, = cos $ - S C O S ~  $ (A 14) 

a'2 
$a cos4 $ + - (8 - tan2 $) dg = 0. 

2 cos2 $ 

A somewhat simpler principle may be obtained by taking a = l/cos $ in (A 11) .  Thus 
the mean parameters are then given by 

K$ = 1, o$ = 1, b$ = 1-acos2$, C* =aces$ (A 16) 

and the corresponding amplitude function a*(g) is such that u*(cos2$f)/cos2-# is a 
solution of (A 15). Thus a * satisfies the variational principle 

8s [2a*2Ab*-+a*4+$a*'2(&cos2$-sin2$)]d~ = 0 (A 17) 

with first integral 

(A 18) 
a 

-[2a*2Ab*-~a*4-~a*'2(&~os2-#-sin2$)] = 0. 
8'5 

This equation is equivalent to (16) of 9 2. 
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